0 Members and 1 Guest are viewing this topic.
Now... if we can work on 3D Bio-Printing...
As noted in an earlier planetsave post on lunar construction , 3D printing technology is achieving remarkable things of late — most especially in the fields of biomedicine and cell biology.And while bioengineers have succeeded in printing embryonic (mouse) cells via similar technology, the ‘holy grail’ of cell printing — the printing of living embryonic stem cells from human cells — has remained unfulfilled….until now.Researchers at the University of Edinburgh (Faulkner-Jones et al) have for the first time succeeded in developing a 3D printing technology that churns out living, human embryonic stem cells — each a copy of a human stem cell “template. The new 3D printer “spits out” uniform droplets of liquid containing the cells and it does so gently enough to keep them alive long enough to develop into other cell types.Human embryonic stem cells (hESCs, in general, ES cells) are obtained from a human embryo. This process of extracting hESCs normally results in the destruction of the embryo* — a fact that has led some to oppose the development of stem cell medical technology.---The printing technique initiates cell differentiation by prompting the stem cells to form “embryoid bodies” (i.e., embryo-like, “spheroid aggregate”). It accomplishes this by dispensing two layers of “bio ink” (every printer needs ink, right?) — one layer containing the progenitor stem cells along with a growth medium, the other containing just the nutrient medium — through computer-controlled micro valves.---Microscopic analysis revealed that 95% of the cells remained alive after 24 hours and more than 89% of the cells were still alive after three days. The cells tested positive for a pluripotency bio-marker indicating that each was still a viable ES cell, and, that the printing technology did not harm the cells.